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ABSTRACT

With the growth of information dissemination over digital communication
networks, much research has been devoted to compressing digital image information for
efficient transmission. The ability to adjust the desired resolution of an image as the
available bandwidth on the network changes allows the user to control the flow of data
according to the resources available. In this thesis we integrate multiresolution image
compression methods with image recognition techniques to assist in automatic image
recognition at several levels of resolution. Features of grayscale and binary images of text
characters and aircraft line drawings are described using wavelet transform coefficients,
wavelet transform subband energy, and Fourier transform coefficients. Transmission of
these features over a digital communication link is simulated, and multiresolution

recognition performance in the presence of channel noise is presented.
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I. INTRODUCTION

The growth of information exchange over digital communication networks has
made image compression one of the most important research topics in recent years. The
ability to adjust the desired resolution of an image as the available bandwidth on the
network changes allows the user to control the flow of data according to the resources
available. In this thesis a scheme for integrating multiresolution image compression with
automatic image recognition techniques is presented. It is shown that this method can

achieve fast and accurate image recognition at varying resolution levels.

Figure 1 shows a model of a digital communications link which shall be used in the

rest of the thesis. The available bandwidth on the channel varies with the traffic on the

Transmission Im
Image Encoder ] age
8 — 1 Channel — ¥ Decoder [ Recognition
4 Algorithm
Resolution
Selection

FIGURE 1. Multiresolution Transmission Scheme, After Ref 9, p. 33

channel. The user selects one of five resolution levels for the image, adjusting the desired
resolution as traffic varies. Normally, the user selects the lowest resolution level to mini-
mize the load on the channel. One of the important features in this scheme is the ability to
recognize images at a variety of resolution levels. This allows the user to use low resolu-
tion images to identify images of particular interest and then select higher levels of resolu-
tion only for these images, thus maximizing the utility of the available bandwidth. A
typical scenario in which this model is applicable is transmission from a remote sensor

where the processing power and memory storage available onboard is insufficient to per-



form image recognition. Another example is searching an image archive at a remote site.

In this thesis, multiresolution image compression with the wavelet transform is
integrated with image recognition algorithms to perform multiresolution image recognition
of text characters. The processing overhead due to image registration required to perform
recognition on images which have undergone linear translation can be reduced by using
Fourier transform coefficients as elements of the feature vectors. The memory and the
bandwidth required to perform recognition are reduced by using the energy in each subband
of the wavelet transform as elements of the feature vectors.

Chapter II introduces the fundamentals of image recognition and shows the
importance of the feature selection problem in designing a recognition system. Chapter III
provides background for multiresolution signal decomposition with the wavelet transform.
Chapter IV presents results of the proposed multiresolution image recognition algorithm
using text characters. Chapter V summarizes the results and suggests areas of future

research. Computer code used in this thesis is presented in the Appendix.



II. IMAGE RECOGNITION

This chapter discusses the digital image representation and recognition scheme
which is the backbone of the work presented in this thesis. The scheme can be described in
terms of a system of image processing functions which must be performed to convert an
image of a real-world object into a form which a computer can analyze and classify as
shown in Figure 2. We shall use scanned images of text characters to test our recognition

algorithm, but the discussion in this chapter holds for any black and white image.
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FIGURE 2. Image Recognition System Diagram After Ref 1, p. 8

The scheme begins with an image sensor which captures the image. If the sensor is
an analog device, such as a film camera, the image must be digitized and converted to a
grayscale image, often by using a scanner. For each small area of the image, known as a
picture element or pixel, the scanner converts the analog image to a number which

represents the relative intensity of light in that pixel. A typical scanner may divide the




intensity spectrum between black (zero brightness) and white (maximum brightness) into

256 or more distinct shades of gray. This is known as a grayscale imége.

The grayscale image is then passed to a segmentation routine, which separates
objects in the image by applying a threshold to the image, using the fact that distinguishable
objects’ pixel values differ markedly from the pixel values of the surrounding environment.
In Figure 2, the objects are the individual letters in the word “DOG.” The objects are then
input to a feature extraction routine, which distills important information from the image,

called features. The individual features o, &y, etc., are combined together into an n-
dimensional feature vector [0, Oy,...0,1, Which is then passed to a classification routine.

The choice of features determines the length of the feature vector. In Chapter IV, we shall
use feature vectors which vary from 9 to over 16,000 elements. The classification routine
compares the feature vector obtained from the image currently being classified, known as
the test image, with the feature vectors obtained previously from reference images. The
classifier associates the test image with one of the reference images, and outputs the

decision thus made.

The performance of an image recognition system is expressed using the percentage
of correctly classified images. For a character recognition system, this is the rate at which
the classifier outputs a “D” when a “D” was input, for example; if the classifier declares
that the image was anything other than a “D,” an error has been made. There are many

possible sources of errors. To illustrate this, a detailed discussion of each image processing

function is required.

A. IMAGE ACQUISITION

The two elements necessary to create an image of a real-world object in a form
readable by a computer are a physical device that is sensitive to electromagnetic energy,
such as a camera or charge-coupled device, and a digitizer, which converts the information
into a discrete set of numbers [Ref 1, p. 10]. Consider a flatbed image scanner, for example,
which was used to create the reference images in this thesis. A scanner sensor, like many

photocopier sensors, consists of a line of silicon imaging elements, called photosites, which



produce an electrical voltage output proportional to the intensity of the light reflected from
the original image as it is scanned [Ref 1, p. 12]. The sensor outpﬁts a set of voltages

corresponding to the distribution of brightness in the original image.

The set of individual voltages is formed into an NxM array, each element of which
is a pixel. This array is then fed to a digitizer, which converts the voltage levels to a discrete
set of numbers corresponding to the voltage in a particular area of the image. These
numbers, called the grayscale values, are limited to a particular range [0, J]. Generally, J is
a power of 2. These three parameters, N, M, and J, determine the two factors which govern
the resolution (degree of discernible detail) of the picture obtained from the digitization

process: spatial resolution and gray level quantization.

Note that there is a tradeoff between resolution and the memory required to store
the digital image: the finer the resolution, the greater the storage requirement. For example,
an image comprised of 256 x 256 pixels (65,536 pixels total) quantized into 128 gray levels
(requiring at least 7 bits per pixel) takes up approximately 64 kilobytes of memory. The
same image using 1024 x 1024 pixels and 256 gray levels requires over 1 megabyte of
storage [Ref 1, p. 33]. In addition to the added burden on memory resources, more pixels
means longer processing times at each stage of the image recognition system, at least until
feature extraction. Determining the proper tradeoff between resolution and storage
requirements is one of the fundamental design decisions facing the image processing
system designer. For the purpose of image recognition, the desired resolution is the
minimum required to extract feature vectors sufficiently distinct to provide accurate
classification. If the original image does not have sufficient resolution, there are numerous

ways to enhance the image by additional processing.

B. PREPROCESSING

These methods, which fall into the pre-processing block in the system diagram,
include filtering, edge enhancement, and contrast enhancement. Each of these is designed
to amplify crucial details present in the image while suppressing noise and undesired image

elements.




Filtering can be done in either the spatial or the frequency domain. In the spatial
domain, filtering amounts to convolving the image with a window chosen for its spectral

properties. Examples are shown in Figure 3.
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FIGURE 3. Examples of Spatial Filters. After Ref 1, p. 195-200

The low pass filter in Figure 3 computes the average of pixels in a 3x3
neighborhood around a pixel in the center. This suppresses noise, but blurs sharp edges.
The high-pass filter enhances edges, but magnifies noise. The Sobel filter computes the
gradient in the y direction at the center pixel. When this quantity is added to (subtracted
from) the original pixel value, contrast between the value of the center pixel is increased
(decreased). If the pixels in this 3x3 neighborhood are uniform, this operation has no effect.
However, if the neighborhood contains a horizontal edge, the value of the center pixel will
be changed considerably, thus increasing the contrast between this pixel and background
pixels. The Sobel vertical filter is the transpose of the horizontal filter.

Filtering in the frequency domain is performed by computing a two-dimensional
transformation of the image, such as the Fourier transform, and then assigning various
weights to the components in the transform domain to accomplish a desirable enhancement.
Just as in the spatial domain, there is a tradeoff between reducing noise and reducing the
contrast in the vicinity of edges. Weighting low-pass frequencies relatively more than high
pass frequencies reduces noise, but blurs the sharp edges in the image. Conversely,
weighting higher frequencies more than lower frequencies enhances edges at the cost of
magnifying noise. Finding the optimal mix of enhancements for a given image processing

application must be performed on a case by case basis.



C. SEGMENTATION

After the image has been enhanced, the next step is to distinguish between objects
and swrrounding background and to differentiate among objects. The most basic
segmentation method is grayscale thresholding. The segmentation algorithm converts the
grayscale image to a binary image, where every pixel below the threshold is assigned a
value of 0, and every pixel above the threshold is assigned a 1. If one has no prior
knowledge of the type of image to be processed, one technique of selecting a threshold is

histogram partitioning, as shown in Figure 4.
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FIGURE 4. Thresholding Using Image Histogram

In this example, we see an image of a text character in Figure 4a. A histogram of its
pixel values is shown in Figure 4b. There is a clear break between one cluster of pixel
values and the other, making the choice of the threshold at T obvious. Unfortunately, for
many images, such as the text character shown in Figure 4c, the choice is often not as clear
due to noise in the scanning process or the nature of the object and background. This
character’s histogram is shown in Figure 4d. Note that there is no clear threshold for this
poorly processed image. Nevertheless, for the purpose of character recognition, the choice

of the threshold for a particular image is not as important as consistency between



thresholding the reference image and the test images. So long as both the reference image
and the test image use a similar threshold, the feature vectors extracted from each should

be similar.

D. FEATURE EXTRACTION AND IMAGE REGISTRATION

After segmentation, the binary image is passed to a feature extraction routine.
Image features are quantities which carry information about the object in the image, such
as size, texture, color, etc. They may also contain transform domain information such as the
energy in a particular band of frequencies. Images may be formed into classes based on the
similarity of their feature vectors. The choice of features which efficiently and accurately
describe the various classes of images is known as the feature selection problem. In general,
spatial domain features are sensitive to variations in image translation, rotation, and scale
changes [Ref 1, p. 501]. If one uses spatial domain features, one must compensate for

spatial variances by registering the image.

Registration is the process by which one corrects for relative translational shifts,
rotational shifts, and resolution differences from one image to another [Ref 2, p. 562].
Image translation can be compensated for by calculating the correlation between the

reference image X (m,n) and a test image X,(m,n) for all possible shifts of the object within

the image. In its simplest form, this measure is defined as

M N
Z ZXr(m,n)Xt(m—j,n—k)
R(m,n) = m=lin=1 , (EQD

M N l M N l
Y Zsz(m,n)]z z ZX,Z(m—j,n—k):lZ

=1ln=1 =1ln=1

where (m,n) are pixel positions in an MxN image. There are several problems with this
method, however. First, the correlation may be relatively broad, i.e., having no single
sharp peak in the correlation function. Second, noise may mask the true peak. Finally, reg-
istration is computationally expensive, especially if the relative motion between images is

significant [Ref 2, p. 566].
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Another solution to the registration problem is to find an alternate representation of
the image which is invariant to translation, rotation, contraction, or reduction. One example
of this is to take the Fourier transform of the image and use the Fourier coefficients to create
feature vectors. The magnitude of Fourier transform coefficients in a rectangular
coordinate system are invariant to linear translation, i.e., the coefficients change due to
translation of the object in the spatial domain by changing in phase, but not in magnitude
[Ref 1, p. 95]. We will use this property to our advantage in Chapter 4 by taking the Fourier
transform of wavelet transform coefficients to obtain multiresolution translation invariant
recognition. However, Fourier coefficients in a rectangular coordinate system are not
invariant to translations in rotation [Ref 1, p. 99]. Rotating an image by an angle ¢ rotates
the Fourier transform by the same angle. If one first converts the image to polar
coordinates, one can obtain a polar Fourier transform, for which the magnitude of the
coefficients is invariant to rotation. Unfortunately, one loses linear translation invariance
in the process. Since the focus of this thesis is on the recognition of text characters, which
are generally not subject to rotational changes, we shall not address rotational variance

further.

Once the feature vector has been obtained, it is compared with feature vectors from
various reference images which represent the different classes of the image. The feature
vectors of the reference images occupy an n-dimensional Euclidean space, called the

feature space, as shown in Figure 5. Each reference feature vector r; represents a point in

the feature space. One logical and simple way to classify test images is to compute the

Euclidean distance between each of the reference feature vectors r; and the test feature

vector t:

dist(rpt) = A/(ri -t)T(rl- -1 . (EQ2)

The test image is then associated with the reference image which has the smallest distance
measure. If the net effect of all the various forms of image noise can be modeled as addi-
tive white Gaussian noise, it can be shown that the minimum distance classifier is opti-

mum [Ref 1, p. 581].




€2
FIGURE 5. Feature Vectors And Euclidian Distance in Feature Space

Another possible classification method is a neural network based approach, which
has great utility when the statistical properties of the pattern classes are unknown. A
multilayer network is trained with the reference images using a learning technique such as
the backpropagation algorithm [Ref 1, pp. 595-602]. If the network has learned the proper
classification for each reference image, it should be able to correctly classify a test image.
Unfortunately, analyzing the performance due solely to the influence of the selection of
image features is difficult. In this thesis, we shall use the minimum distance classifier.

We have seen that the performance of an image recognition system depends on a
chain of processes, each one of which is essential to the proper functioning of the system.
Feature selection is an important part of the recognition system. The wavelet transform,
which supports a multiresolution approach to the feature selection problem, is presented in

the next chapter.

10



III. MULTIRESOLUTION IMAGE COMPRESSION AND THE
WAVELET TRANSFORM

Multiresolution signal decomposition can be used as a form of flow control in a
packet switched network by allowing a user to adjust the desired resolution of an image
based on the available bandwidth in a communications channel [Ref 9, p. 1]. We will show
how the wavelet transform allows us to perform multiresolution image compression and
show how this can be integrated with the algorithms from Chapter II to recognize images

at different levels of resolution.

A. MULTIRESOLUTION IMAGE COMPRESSION AND RECOGNITION

Figure 6 shows the model of a multiresolution image compression and recognition

scheme over a digital transmission channel (packet switched network) used in this thesis.

Transmission I
Image Encoder — — | HAZC
e ®1 Channel Decoder Recognition
4 Algorithm
Resolution
Selection

FIGURE 6. Multiresolution Transmission Scheme, After Ref 9, p. 33

In this scheme, the user desires to transmit images of unknown content from a
remote site as quickly as possible. This is often a problem when searching an image
archive. The available bandwidth in a packet switched network varies with the requested
load on the channel. Multiresolution image coding allows the user to select the desired
amount of detail in an image to be transmitted depending on the current load as measured
by the packet delay through the channel. If the channel is congested, the user will want to
transmit images at the lowest level of resolution from which they can be recognized. If the
user decides that the image is of particular interest, it can be enhanced by adding additional

detail with further transmissions [Ref 9, p. 26].

11




To determine rapidly and accurately which images are of interest, the user requires
a way to compare images at different levels of resolution as shown in Figure 7. As stated
in Chapter II, registering images at different levels of resolution is computationally

expensive, s0 we require a way to compare images without first registering them.

100
150F

250

B 8 8 8 & u

7a 7b

FIGURE 7. Two Images of an Object at Different Scales

The solution is to use the orthogonal projection of the image in Figure 7b onto the
space spanned by the image in Figure 7a. We obtain the orthogonal projection simply by
taking the wavelet transform of the image in Figure 7b and discarding the smallest scale
wavelet transform coefficients, then performing the inverse wavelet transform [Ref 11, p.
314-320]. Alternatively, we can perform image recognition in the wavelet domain, using
wavelet coefficients as image features in our recognition scheme. Before showing how this

can be done, we first present a brief overview of the wavelet transform.

B. ORTHOGONAL BASIS FUNCTION EXPANSIONS

We desire to decompose a signal x(t) using elementary functions ¢;(t), 92(t),... so

that we may discern information present in the signal which may not have been obvious in
its original form. If every function contained in a vector space V can be written as a linear

combinations of linearly independent vectors ¢,(t) which span V, i.e.

12




x(t) = ;ckd)k(t), . (EQ3)

then the set ¢;(t), ¢5(t),... forms a basis for V [Ref 5, p. 78]. The c;’s are the transform
coefficients, i.e., they are the projection of the function x(t) onto the basis function ¢, (t). If
the basis functions are orthogonal, we can compute this projection by taking the inner
product of the signal x(t) with the basis function Ok(t) [Ref 10, p. 245]. We define the inner

product operation for continuous signals as

Cp = X0, 0, ()= Ix(t)tbk(t)dt (EQ4)
and for a discrete signal of length N,

N
¢y = Z x(n)q)k(n) . (EQS)

n=1

The set ¢;(n), ¢5(n),... is said to be orthonormal if

(d)l.(n),tb(n)j) =8 (EQ6)

where &;; is the Kronecker delta function.
One well-known form of signal decomposition which has these properties is the
discrete Fourier transform, in which the d(n) are complex exponentials at a single
frequency. Each transform coefficient, therefore, is simply the signal content at the

frequency of the exponential. Any discrete signal can be represented as a weighted sum of

these basis functions, ie.,

N j2mkn
Yoe " EQ7)
k=1 .

x(n) =

.ZI'—‘

where each Cy is the coefficient at the k-th frequency,

N j2nkn

¢ = Z x(n)e—T . (EQ 8

k=1

This is equivalent to a filter bank formation as shown in Figure 8a [Ref 8, p. 800].

13




(a)

Hl H2 H3 o . . H

Frequency ®

(b)
FIGURE 8. Fourier Transform as Ideal Orthogonal Filter Bank Tiling the Frequency Axis

Each basis function in the Fourier transform corresponds to a non-overlapping bandpass
filter. The output of each of these filters is the content of the signal x(n) in each frequency
band. The division of the frequency axis into contiguous nonoverlapping sections is
known as tiling, as shown in Figure 8b.

Frequency is not the only important characteristic of a signal. An equally important
feature, particularly for images, is scale. Scale is the amount of time or space over which a
particular signal component is significant. Note that while the Fourier coefficients locate
signal energy well in frequency, the time or space resolution is poor. Wavelet analysis does

not suffer this limitation and provides a way to localize signals in both scale and space.

14



C. 1-D WAVELET TRANSFORM

We start with the multiresolution formulation of Mallat for one-dimensional signals
[Ref 6, p. 6]. Any signal can be decomposed into low-pass and high-pass signals. Formally,

a vector space Vj, is comprised of two spaces: V;, which contains all low-pass functions,

and Wj, which contains all high-pass functions, or

VieW=V;, . EQ9
The spaces V; and W; are called orthogonal complements of each other because they are
nonoverlapping, and they combine to span V;.;. One can decompose a signal x(n) which
is comprised of frequencies in the range [0, ] by one set of basis functions which spans
the range Vj = [0, /2] and another set which spans the range Wj = [r/2, &), as shown in
Figure 9a. If we extend this idea by successively dividing the range [0,7/2] into smaller
and smaller subspaces, as shown in Figure 9b, we see that any subspace V; contains an
infinite number of subspaces V;_;, V., etc. Each of these spaces also has a complemen-
tary space Wj.1, W;.». The space which contains all square summable functions, known as
L2, contains all subspaces VJ-. This relation is summarized below:

_ 12
ngVj+1ng+2;Vw_L ) EQ 10

Mallat showed that the spaces Vj, V;j, etc. are spanned by dilations and integer
translations of a single scaling function ¢j(n) (a low-pass function), and the spaces W, are
similarly spanned by dilations and integer translations of y;(n) (a high- pass function) [Ref
6, p. 6]. Because V;.; and Wj.; are subspaces contained wholly within V;, ¢;(n) and y;(n)
at scale j can be expressed in terms of a filter and the functions themselves at scale j-1. If

h(n) is a low-pass filter and g(n) is a high-pass filter, then
¢j(n) = Z‘:h(i)cbj _,@n-i),and EQID
VOBV OUSCIDE EQ12)
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FIGURE 9. Ideal Muitiresolution Signal Decomposition

where ¢j_1(2n-i) is the ith translation of ¢j_1(2n), which is a basis function for scale j-1,
and ¢;(n) is a basis function for scale j.

If we make the translations and dilations of the scaling functions orthogonal, then
it can be shown that any function x(n) can be decomposed into high-pass and low-pass

signal components, i.e.,
x(n) = ;qu’k(n) + ;dk\l/k(") s (EQ 13)
where

¢, = (x(n), ¢ k(ﬂ)) (EQ 14)

and
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dy= (x(n), \vk(n»- (EQ15)
Here cy is the inner product of x(n) and ¢y(n), and dy is the inner' product of x(n) and
yi(n), and k indicates the translation index [Ref 6, p. 9]. Further, it can be shown that in
order for the reconstruction of the signal to be perfect, h(n) and g(n) must form a quadra-
ture mirror filter (QMF) pair [Ref 6, p. 15]. These fundamental results of wavelet analysis
were developed independently in the field of subband coding.

D. IMPLEMENTATION WITH QUADRATURE MIRROR FILTERS

The basic building block of discrete time wavelet analysis is the quadrature mirror
filter pair. This set of filters allows us to decompose a signal into low-pass and high-pass
signal components, decimate the resulting signals, and then to reconstruct the original
signal from these components perfectly. A block diagram of this scheme is shown in Figure

10, and the frequency response of a quadrature mirror filter pair is shown in Figure 11.

Analysis Section ! Synthesis Section

B ho(n) ¥ 2

> ‘ 2 L go(n)

x(n)

> h@E-Y2 A2 e g

I
I
I
I
I
I
|
I
!
I
I

FIGURE 10. Block Diagram of Analysis And
Synthesis Sections of a Quadrature Mirror Filter Bank
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Frequency Response For Daubechies-20 Filter
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FIGURE 11. Frequency
Response Of QMF Pair

If we continue to apply signal decomposition with quadrature mirror filters on the
low-pass signal component, we obtain Mallat's scheme for the discrete wavelet transform
[Ref 6, p. 11]. The input signal x(n) is successively low-pass and high-pass filtered
followed by downsampling. The resulting functions ¢; and d; represent the low-pass
“coarse” and high-pass “detail” signals, respectively, at each scale. From the previous

discussion, ¢; is a function in space V;, and d; is a function in space W;. Figure 12 shows a

representation of this scheme, which is known as the fast wavelet transform.
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FIGURE 12. Fast Wavelet
Transform Block Diagram

E. TWO-DIMENSIONAL FAST WAVELET TRANSFORM

The one-dimensional discrete-time wavelet transform can be extended to two

dimensions by assuming that the scaling and wavelet functions are separable, i.e.,-

0;(m, n) = ¢,(m)} (n). (EQ 16)
At each scale j, we need three wavelet functions, corresponding to the cases where we

~ have low-pass frequencies in m and high-pass frequencies in n, high-pass in m and low-

pass in n, and high-pass in both variables, respectively. These are written as

yilim, n) = o(m)y(n) ®Q17)
W20m, 1) = y(m)d(n) EQ18)
wj3(m,n) = y(m)y(n) (EQ19)

If M = 2J, which we shall assume throughout this thesis, an M x M image will have
J orthogonal scales. As shown in Figures 13 and 14, the two-dimensional wavelet transform
decomposes the signal into four subbands, k= 1, 2, 3, and 4, at each scale j-Thek =1
subband, which is low-pass in both m and n directions, is then decomposed further at one
scale lower. This process may be repeated until the signal at the largest scale is a single
coefficient. Dividing an image into components of differing scale is similar to tiling the

frequency axis as discussed in section IIL.B. Subband energy is a measure of the signal
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content in a particular tile. The energy in a given K x K subband E;y is the squared sum of

the wavelet coefficients in that subband

K K
. 2 .
Ejk_z‘\;c g J€ L2 Tke1,2,3,4. (EQ 20)

In Chapter IV, we will show that subband energy values can be used as features in an

image recognition scheme.

B (M) ]y 2 [ o' (m,n)

B () .[
(M) |y 2 | W (m,n)

X(m,n)

(n),

3
{ D b L m) . y;'(m,n)

hy(m) h;(n) o
olm 2 1(11
gl { Ty, W12(m,n)

hy(n)

h(m)y. ¥1°(n,n)
{ Ro(m),,. ¢1(m,n)

FIGURE 13. Two-Dimensional
Fast Wavelet Transform
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FIGURE 14. Decomposition of Image Into Components In Orthogonal Subspaces

F. MULTIRESOLUTION CODING USING THE WAVELET TRANSFORM

The two dimensional wavelet transform can be used to create a multiresolution
image compression scheme [Ref 7, p. 26]. Figure 15 shows the tiling used for the proposed

multiresolution image compression recognition scheme.
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FIGURE 15. Multiresolution Image Compression Using Wavelet Transform

In this scheme, we decompose the signal at five different levels of resolution, which

are labeled Ry, Ry, R3, Ry, and Rs. The feature vector for R; consists of the wavelet
coefficients at scale J-4, R, consists of Ry enhanced by the wavelet coefficients at scale J-

3, etc. The feature vector for Rg is the entire wavelet decomposition of the test image, as
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shown in Figure 15. The data compression ratio C; for each resolution level R; is a function

of the resolution level used [Ref 9, p. 27]. These ratios are obtained as a ratio of the total
bits transmitted to the total number of bits in the original image. Table 1 shows the

compression ratios for each of the resolution levels.

Table 1: COMPRESSION RATIOS FOR RESOLUTION LEVELS

Resolution C.
Level 1
R, 2=5 6:1
Ry 64:1
Rj 16:1
Ry 4:1
Rj 1:1

G. MULTIRESOLUTION IMAGE RECOGNITION SCHEME

As stated in section III.A, in order to identify rapidly and accurately images of
particular interest, we require a way to perform image recognition on images at various
resolution levels. One method is to interpolate the low resolution image until it is the same
size as the higher resolution image. One can then input this image to the recognition
algorithm proposed in Chapter II.

An alternative method is to perform the comparison of the two images in the
wavelet domain. In this technique, the distance between the feature vector at resolution

level Rq-Rs and a reference vector is computed. The reference vector is obtained by taking

the wavelet transform of the reference image and discarding wavelet coefficients at
resolution levels higher than the test image. A block diagram of this scheme is shown in

Figure 16.
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FIGURE 16. Multiresolution Image Compression and Recoguition Scheme

The scheme assumes that the user desires to transmit an image which he knows can

be associated with images stored in a reference set. In this thesis, the images to be
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transmitted are one of 36 alphanumeric characters. Before the user transmits the image, the
total packet delay through the transmission channel is measured to determine the current
load on the channel. Based on this measurement, the user selects a desired resolution level

R;..Rs for the image to be transmitted. The wavelet transform of the test image is

computed and wavelet coefficients at scales higher than the desired level of resolution are
discarded. The image is then encoded using 8 or 12 bits per wavelet coefficient for
transmission in the noisy channel. At the receiving end, the received message is decoded
and the received wavelet coefficients are formed into a vector. The distance between the
received vector is compared with a set of 36 reference vectors consisting of the wavelet
coefficients of the reference images. The received vector is associated with the vector with
the smallest Euclidean distance. Once this association has been made, the user can
determine whether the image is of sufficient interest to request transmission of the

remaining wavelet coefficients.

H. SUMMARY

The wavelet transform decomposes the signal into orthogonal components at
different scales, which can be used to form feature vectors for image recognition. The
signal energy in each subband of the wavelet transform can also be used to create feature
vectors. In the next chapter, we use show the performance of a multiresolution image

compression and recognition scheme in the presence of channel noise.
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IV. IMPLEMENTATION OF MULTIRESOLUTION CHARACTER
RECOGNITION

In this chapter we shall implement the proposed multiresolution image recognition
scheme and present the results. Performance of the proposed algorithm using wavelet
transform coefficients at all five resolution levels as elements of the feature vectors (see
Chapter III) is presented first. The use of signal enetgy in each subband of the wavelet
transform as elements of the feature vector is presented next. The use of Fourier transform
coefficients as elements of the feature vectors to perform recognition on images which are
linearly displaced with respect to the reference image without first registering the test
image is then presented. Finally, we show results for each of these cases in the presence of

channel noise.

The use of text characters as image objects was chosen for several reasons. First,
text characters are easy to segment, so we did not have to develop complicated low-level
processing routines which did not relate to the main topic of the thesis. Second, since many
text characters look very similar -- a 0 looks much like an O, an E looks much like an F,
etc., text characters provide a rigorous test of image recognition performance. Finally,

realistic data sets of text characters are easy to generate.

A. IMPLEMENTATION

We shall begin by describing implementation details for each block in the image
recognition scheme proposed in Figure 2. The 36 images of text characters we shall use in
this thesis were obtained by typing the capital letters A-Z and numbers 0-9 using the OCR-
A font in a standard word processing program. The letters were then printed using a
standard laser printer and scanned using a flatbed scanner and a commercially available
image processing program. To convert the scanned image into a form suitable for
processing in Matlab, the scanner output was first saved in JPEG format, then converted to
TIFF format, and finally converted to a 64 level grayscale image in Matlab. This character

set is shown Figure 17.
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FIGURE 17. Reference Character Set

The scanned letters in Figure 17 have sharp edges, and there is little noise to hinder
the recognition process. We tested the effect of a 3x3 median filter for enhancement, but
only 1-3 pixels changed value during the filtering process, so we judged this to be
insignificant. Also considered were edge sharpening filters, but it was determined that this
might create unintended artifacts and would not produce discernible enhancement with
such high quality images.

The image in Figure 17 was fed to a segmentation routine which first identified each
line of text by summing across the rows of the image and applying a threshold. If the sum
was less than the threshold, the algorithm concluded the row consisted entirely of
background; conversely, if the sum exceeded the threshold, the row contained part of a
character. The threshold was determined based on a histogram of the pixel values. The rows
identified as containing text characters were then grouped together; if there was a large
break between identified rows, the algorithm concluded that one line of text had ended and

another begun.

Next, the individual characters were parsed from each row by applying another
threshold. Plots of individual characters obtained from the character set in Figure 17 are

shown in Figure 18. The computer code used to generate these characters, cutter.m, is.
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given in the Appendix. These characters form the set of reference images for the

recognition system for all trials in this thesis.

ARl cholERF
LIS
dmfinfoflrleflr
HEINDDNIE
MECOREBE
BEODOEDE

FIGURE 18. Reference Character Set After Segmentation

B. MULTIRESOLUTION RECOGNITION WITH ZERO NOISE ADDED

1. Wavelet Coefficients as Feature Vector Elements

To test the proposed multiresolution recognition scheme, a set of grayscale test.
characters was created by separately scanning and segmenting several lines of text using
the same procedure used to create the reference set. This set of test characters is shown in
Figure 19. Note that each alphanumeric character in the reference set is represented in the

test set.
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FIGURE 19. Test Character Set

The wavelet transform of each test image and each reference image was computed
and the coefficients placed into a feature vector as described in Chapter III. Note that the
size of both the test and the reference feature vectors are different for each level of
resolution R;-Rs. The Euclidean distance was computed between the test vector and the
reference vector for each image in the reference set. The test character was associated with
the text character in the reference set with the smallest Euclidean distance measure. The
declared associations were compared with the correct associations to determine recognition
performance. We ran this test for the Daubechies filter family of length 4, 12, and 20; each
trial yielded 1.000 (100%) recognition performance.

2. Subband Energy as Feature Vector Elements

An alternative method which works with even fewer bits transmitted uses the
energy in each subband of the wavelet transform as elements of the feature vector. As given
by Equation 20, the energy in a subband is the squared sum of wavelet coefficients in that
subband. To compare images at different levels of resolution, we ignore the energy in

small-scale subbands. For example, if the test image is transmitted at resolution level Ry,

we ignore the energy in subbands for the three smallest scales. Table 2 shows the size of
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the wavelet coefficient matrix for the compressed image at each level of resolution and the

length of the feature vector for 128 x 128 images such as those used in this thesis.

TABLE 2: FEATURE VECTOR LENGTH USING SUBBAND ENERGY

Size of
Resolution Wavelet L;:ag;?r:f
Level Coefficient Vector

Matrix

R, 8x8 9

R, 16x 16 12

R; 32x32 15

Ry 64 x 64 18

Rs 128 x 128 21

For a length 20 Daubechies filter with zeros channel noise added, we observed

0.9565 recognition performance at resolution level Ry, 09783 for Ry, and 1.000

recognition performance for resolution levels R3-Rs.

3. Fourier Transform Coefficients as Elements of the Feature Vectors

As discussed in Chapter II, one problem which complicates the image recognition
problem is classifying images which are not in the same spatial location as the reference
images. When using spatial domain features, it is necessary first to register the image to
compensate for any translation. An alternative approach is to take the Fourier transform of
the image and to use the magnitude of the coefficients as features, which allows one to

perform image recognition without first registering the test image.

31



To test the performance of this method with zero sensor noise, a set of test images
was created from the reference set by translating the reference character away from the

center by an arbitrary amount. This test set is shown in Figure 20.
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FIGURE 20. Translated Reference Character Set

The two-dimensional Fourier transform of each image in this test and the reference
set was computed. The magnitudes of the transform coefficients for each set of characters
were formed into feature vectors. The measured distance between the feature vectors for
the reference and test sets was zero within the limits of finite computer precision (on the
order of 10'30).

To test whether it is possible to perform image recognition without registering the
image in the presence of sensor noise, we translated each image in the character set shown
in Figure 19 by a random amount. This test set is shown in Figure 21. This trial yielded
0.9565 recognition performance at resolution level Rs. The algorithm incorrectly identified
a “6” as a “9” and vice versa. Note that the “6” and “9” in the reference set are nearly
identical except for a 180 degree rotation. The measured recognition performance was

0.9130 at resolution level R3, 0.8261 at resolution level R,, and 0.3478 at resolution level

R;.
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C.  MULTIRESOLUTION RECOGNITION WITH CHANNEL NOISE ADDED

1.  Wavelet Coefficients as Elements of Feature Vectors for Grayscale Images

To test the performance of the proposed multiresolution image recognition scheme
under realistic conditions, it was necessary to simulate the transmission of data over a noisy
transmission channel. The feature vectors for the grayscale test images used in the previous
section were converted to 8$-bit binary data using uniform quantization and Gray coding.
To simulate errors due to additive white Gaussian noise in the communications channel,
random bit errors were introduced at selected bit error rates (BER) using a random number
generator. Twelve trials of the simulation were performed for each filter length, level of
resolution, and bit error rate; results presented are obtained by averaging the results for
these twelve trials. Figure 22 shows recognition performance versus bit error rate for

resolution levels R, Ry, R3, and R for alength 4 Daubechies wavelet filter. The computer
code for this trial, wavetest.m, is given in the Appendix. Results for resolution level R was
similar to that for Rs and is excluded for the sake of clarity. Figures 23 and 24 show results

for length 12 and length 20 Daubechies wavelet filters, respectively. With respect to the
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decrease in recognition performance with increasing compression ratios, the performance

shown in Figures 23 and 24 is consistent with that shown in Figure 22.
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FIGURE 22. Performance with Length 4
Daubechies Filter on Grayscale Image
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FIGURE 24. Performance with Length 20
Daubechies Filter on Grayscale Image

Recognition performance degrades rapidly when the bit error rate exceeds 107

Note that the recognition performance falls with higher compression ratios. This agrees

35




with our intuition because at higher compression ratios, each bit carries a higher percentage

of the information in the image.

2. Wavelet Coefficients as Elements of Feature Vectors for Binary Images

To show the performance of a multiresolution image recognition system for binary
images, we tested the multiresolution algorithm using a set of images which had been
converted to binary images by histogram thresholding. Figures 25-27 show the results for
length 4, 12, and 20 Daubechies filters at Ry, Ry, R3, and Rs for grayscale images of the

text characters shown in Figure 19 coded using 8 bits per coefficient. Again, thé results for
resolution level R4 were similar to those for resolution level Rs and are omitted for reasons
of clarity. The recognition performance for binary images is superior to that for grayscale
images and less sensitive to bit errors. We observe that the feature vectors for binary images
are more distinct than the feature vectors created using grayscale images. Therefore, we
conclude that if the prominent features in an image depend primarily on the shape of the

object, as in this thesis, binary thresholding may be a better approach.
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FIGURE 25. Performance with Length 4
Daubechies Filter on Binary Image
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Daubechies Filter on Binary Image
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3. Recognition Performance as a Function of Filter Length

We also observed that, in general, longer filter lengths yielded better performance
for a given bit error rate at a given level of resolution for both binary and grayscale images.
Longer filter lengths give better performance because there is less aliasing in the subbands
due to the sharper rolloff in frequency response near the cutoff frequency, as shown in
Figure 28. Less aliasing results in less spillover of signal content from one subband into

another, thus driving the feature vectors further apart.
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FIGURE 28. Frequency Response Plots for
Filters of Length 4, 8, 12, and 20

Figures 29-31 show performance vs. BER for R;, Ry, and R; for length 4, 12, and
20 Daubechies wavelet filters; Ry and Rg both showed results near 1.000 for each filter

length.

One factor which counters the increase in performance with longer filter lengths is
the effect of the length of support for the signal. If a signal is zero outside of some range
between points A and B, the distance AB is said to be the support of the signal. The output
of a wavelet filter tends to have a sharp response when the support of the signal is as long
as the support of the filter. This is similar to the matched filter effect. Note that in Figure

29, for which the signals are most compressed and thus have the shortest support, the length
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4 Daubechies wavelet filter outperforms the longer filters. In Figures 30 and 31, this effect

is less prominent.
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4. Recognition Performance as a Function of Bit Resolution

To assess the effect of bit resolution in the performance of the multiresolution
scheme, we repeated the procedure discussed in the previous section using 12 bits per
coefficient. Due to very large computational and memory requirements for this test, we
conducted only one trial for each BER and filter length. Figures 32-34 (single trial) show
that recognition performance is more robust in the presence of channel noise with 12 bit
coding as compared to the performance shown in Figures 25-27 using 8 bit coding

(averaged over 12 trials).
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5. Subband Energy as Elements of the Feature Vectors
Figures 35-37 show the performance for multiresolution image recognition using

subband energy as feature vectors in the presence of channel noise. Computer code for this

method, bandtest.m, is given in the Appendix.

42



Performance

Performance

0.8

o
[

o
»

Daubechies 4 Filter

0.8

0.6 1
0.4 o
02 1

0 . .
107 107 10?2 10
Bit Error Rate
FIGURE 35. Perfomance of a Length 4 Daubechies
Filter Using Subband Energy As Features
Daubechies 12 Filter
1r 4
0.2} 4
?o"‘ ﬂ;"" 1(5‘2 107"

Bit Error Rate

FIGURE 36. Perfomance of a Length 12 Daubechies
Filter Using Subband Energy As Features

43

-1




Daubechies 20 Filter

0.8

o
[

Performance

o
'S
T

0.2f

0 )

107 10” 107 10

Bit Error Rate

FIGURE 37. Perfomance of a Length 20 Daubechies
Filter Using Subband Energy As Features

Recognition performance using this method decreases rapidly in the presence of
channel noise. Since each feature vector element represents a higher proportion of the total
information transmitted, it is reasonable that bit errors introduced by the channel would

have a greater effect on the recognition performance than when using the wavelet

coefficients as feature vectors.

6. Fourier Transform Coefficients as Elements of the Feature Vectors

Combining translation invariant recognition with multiresolution analysis, we first
computed the wavelet transform of the image and then compute the two-dimensional
Fourier transform of the wavelet coefficients in each subband used at the desired level of
resolution. For example, for resolution level Ry, we decomposed the image using the
wavelet transform and then computed the two dimensional Fourier transform of each

subband of the 8 x 8 matrix of coefficients used in R;. The magnitudes of the resulting

Fourier coefficients were formed into a test vector for transmission. Computer code for this

trial, transtest.m is presented in the Appendix. Figures 38-41 show recognition
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performance for this technique in the presence of channel noise. Performance using this
technique is lower than the recognition performance for images which have not undergone

translation. As in the case with no noise, the results for resolution level R; are much worse

than the performance for images at higher levels of resolution.
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Translation
D. MULTIRESOLUTION RECOGNITION WITH AIRCRAFT LINE IMAGES

To show that multiresolution image recognition can be used as part of an automatic
target recognition scheme, we created the following test set by scanning clip art images

from a standard image processing application. This test set is shown in Figure 42.
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FIGURE 42. Aircraft Line Drawing Test Set
Using the test set shown in Figure 42 and a separately scanned reference set, we

tested multiresolution image recognition performance with wavelet coefficients as feature
vectors. The computer code for this trial, planetest.m, is given in the Appendix. With no
channel noise added, the scheme produced 1.000 recognition performance at all resolution
levels and for each filter length. With channel noise added to simulate random errors caused
by additive white Gaussian noise in the transmission channel, the scheme produced 1.000
recognition performance.at resolution levels Ry, R3, and Ry for each filter length. At

resolution level Ry, we obtained the performance shown in Figure 43.
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FIGURE 43. Recogntion Performance vs. BER for
Aircraft Test Set for Compression Ration of 256:1

Again, the degradation in recognition performance for high compression ratios with
increasing channel noise results from the fact that each bit carries a higher percentage of
the total image information. The recognition performance at resolution levels Ry-Rj in this
example is superior to that obtained for the text characters for two reasons. First, the line
drawings are more distinct than the text characters, which means that the feature vectors
obtained from them are further apart. Second, the size of the reference set is smaller,

reducing the chance of erroneous identification.

E. SUMMARY

The wavelet transform can be used to create feature vectors to perform
multiresolution image recognition on grayscale and binary images. Recognition
performance for different resolution levels, bit error rates, and filter lengths for grayscale

and binary images is summarized in Tables 3 and 4.
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Table 3: MULTIRESOLUTION IMAGE RECOGNITION PERFORMANCE FOR
GRAYSCALE IMAGES USING WAVELET COEFFICIENTS FOR

FEATURE VECTORS
Filter Length R; Ry R3 R;

C; 256:1 64:1 61 | L1 |
BER = 0.05 4 0.2120 0.3714 0.5670 0.8636
12 0.1712 0.4366 0.5390 0.9150
20 0.1739 0.4293 0.6341 0.9150
BER = 0.02 4 0.3750 0.4130 0.5851 0.8874
12 02717 0.4746 0.6920 0.9130
20 0.2636 0.4728 0.7264 0.9269
BER = 102 4 0.5571 0.5109 0.6341 0.8972
12 0.4212 0.5290 0.7029 0.9209
20 0.4293 0.5000 0.7446 0.9150
BER = 1073 4 0.9266 0.8605 0.9547 0.9881
12 0.8995 0.8641 0.9438 0.9704
20 0.8967 0.8496 0.9239 0.9842
BER = 10 4 0.9973 0.9130 0.9928 1.0000
12 0.9946 0.9149 0.9891 1.0000
20 0.9946 09112 0.9946 1.0000
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Table 4: MULTIRESOLUTION IMAGE RECOGNITION PERFORMANCE
FOR BINARY IMAGES USING WAVELET COEFFICIENTS FOR

FEATURE VECTORS

Filter Length R; R, R;3 R;

G 256:1 64:1 16:1 1:1
BER =0.05 4 0.5417 0.8870 0.9040 0.8877
12 0.5217 0.9609 0.9656 0.9149
20 0.4819 0.9609 0.9583 0.9040
BER =0.02 4 0.7609 0.9696 0.9710 0.9293
12 0.7717 0.9783 0.9801 0.9275
20 0.7391 0.9783 0.9837 0.9438
BER = 107 4 0.8804 0.9783 0.9819 0.9547
12 0.8533 09913 0.9928 0.9620
20 0.8533 0.9870 0.9909 0.9674
BER =107 4 0.9819 0.9913 0.9964 0.9909
12 0.9855 1.0000 0.9964 0.9891
20 0.9855 1.0000 1.0000 0.9909
BER = 10 4 0.9982 1.0000 0.9982 1.0000
12 0.9982 1.0000 1.0000 1.0000
20 1.0000 1.0000 1.0000 1.0000

If the prominent features of an image depend on shape, as in the images used in this
thesis, binary thresholding is an important preprocessing step. Recognition performance
varies with the bit error rate. Longer filter lengths generally provide better performance, but
as the support of the signal decreases with increasing compression, shorter filter lengths can
provide better results. Performance degrades as the compression ratio increases, but it is

possible to achieve 1.000 recognition performance if the probability of bit error is less than

1073, If Fourier transform coefficients are used as elements of the feature vectors, it is

possible to perform multiresolution image recognition of images which have undergone
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linear translation without registering the image. Performance degradation for compression
ratios higher than 64:1 is particularly severe. Multiresolution image recognition can be
extended to images other than text characters and could be used as part of an automatic

target recognition system.
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V. CONCLUSIONS

A scheme for multiresolution image recognition was presented. The scheme allows
a user to adjust the flow of data over a digital communications channel by varying the
desired resolution of the transmitted image. The transmission of grayscale text character
images at several levels of resolution over a noisy digital channel was simulated, and plots
of the recognition performance versus bit err}or rate were presented. Fourier coefficients
were used to perform multiresolution image recognition on images which had undergone
linear translation without first registering the image. An extension to the use of binary text

characters and to aircraft line drawings was made.

Recognition performance degraded as bit error rate increased and as the
compression ratio increased. Longer filter lengths provided better performance at higher
levels of resolution, but shorter filter lengths performed better at a compression ratio of
256:1. Results for data coded at 12 bits per coefficient were superior to those for data coded
at 8 bits per coefficient. Performance for binary images exceeded that for grayscale images,
indicating that conversion to binary via histogram thresholding may be a better approach
for recognizing images whose features depend primarily on shape. Results for aircraft line
drawings were superior to those for either the grayscale or binary text characters.

This scheme is useful in any situation in which image recognition is critical and the
available bandwidth is limited and subject to change according to the traffic on the channel.
Typical applications include the recognition of images transmitted from a remote sensing
platform and searching an image archive at a remote site.

Future research is needed to extend the proposed approach to different types of
images, such as real images of military targets, medical images, and human faces.
Recognition performance in the presence of sensor noise, image rotation, and image aspect

variation are other important areas of research.
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APPENDIX A
Matlab code implementing the multiresolution image recognition algorithms

presented in this thesis is provided below.

aconv.m

function y = aconv(f,x)

% aconv -- Convolution Tool for Two-Scale Transform
% Usage

% v =aconv(fx)

% Inputs

% f filter

% x 1-dsignal

% Outputs

% vy filtered result

%

% Description

% Filtering by periodic convolution of x with the

% time-reverse of f.

%

% See Also

% iconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo
%

n = length(x);
p = length(f);
ifp<n,
xpadded = [x x(1:p)];
else
z = zeros(1l,p);
for i=1:p,
imod = 1 + rem(i-1,n);
z(i) = x(imod);
end
xpadded = [x z];
end
fflip = reverse(f);
ypadded = filter(fflip,1,xpadded);
y = ypadded(p:(n+p-1));

%
% Copyright (c) 1993. David L. Donoho
%

%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM
% This is Copyrighted Material

% For Copying permissions see COPYING.m
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% Comments? e-mail wavelab@playfair.stanford.edu
%

bandtest.m

%%% % % %o % % %o % Yo% To % %o %e %o To %o %o To %o To o To %o %o
%Determine performance of multiresolution image recognition system
%using subband energy as feature vectors

%%% % % %% % %o % Yo% %o % To % %o %o %o % %o %o %o %o To To %o
clear all;

loadgrayref; %L oad reference images
loadgraytest;%Load test images

colnum = 6;%Initialize global variables for simulation
global START_OK;

START OK=1;

Pgrayband]1 = zeros(5,3); %Initialize output variable - Overall correct recocnition
for trials = 1:12;%Run simulation for 12 trials

Pcorr = zeros(5,3); %Initialize intermediate output variables

m = zeros(46,36); %Initialize Euclidean distance measure matrix

b = [4 12 20];%Run for 3 filter lengths

biterr = [.05 .02 .01 .001 .0001];%Run for 5 bit error probabilities

% %% %o %0 % %0 %

%Main program

%Perform simulated transmission over noisy channel for each filter length and
%bit error probability for this level of resolution (R1)

for u2 = 1:length(biterr); %Run for all bit error probabilities

thisbiterr = biterr(u2); %P(b) for this trial

for u = 1:length(b); %Run for all filter lengths

count2 = 1;%test image index

y = zeros(1,46);%store identified text character in this vector

gmf = MakeONFilter(‘Daubechies’,b(u)); %Create daubechies filter for this trial

for k = 1:5;%Run for all test characters
forj=1:13;

%load test character

if exist([‘graytest’ num2str(k) num2str(j)]) == 0;
break;

else t=eval([‘graytest’ num2str(k) num?2str(G)]);

%Compare t with all reference characters
count = 1;
forp=1:5;
forq=1:8;
fp==5&q>4;
break;
else r = eval([‘grayref” num2str(p) num?2str(q)1);
r = FWT2_PO(r,1,qmf); % Compute wavelet transform of reference image
r = bandenergy2(r); %Compute feature vector using subband energy
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if count == 1;%]If this is the first reference image
t=FWT2_PO(t,1,qmf); %compute wavelet transform of
Yotest image
t = bandenergy2(t); % Compute feature vector using subband energy
t = quantize(t,8, scale’); %Quantize uniformly using 8 bits
%per coefficient
t = bin_enc(t,8); %’Encode using natural binary code
t = bin2gray(t); %Convert to gray coding
%ntroduce random errors using random number generator with
%probability = thisbiterr

noise = zeros(size(t));
bitchange = find(rand(size(t)) < thisbiterr);
noise(bitchange) = ones(size(bitchange));
%Corrupt transmitted signal t with random bit errors found above
t = xor(t,noise);
t = gray2bin(t); %convert to natural binary code
t = bin_dec(t); %decode signal
end;
m(count2 count) = (r-t)*(r-t)’; % Compute distance between reference
%and test vectors
count = count + 1;%increment reference vector index
end;
end;
end;
end;
[n,j] = min(m(count2,:)); %Determine index of reference image with minimum
%Euclidean distance
y(count2) = num2let(j); %Convert to ASCII character
count2 = count2+1;%Increment test vector index
end;
end;
% Compare resuits obtained this trial with correct answer
ideal =[2’ ‘0’ 9’ 5> ‘6’ ‘Q ‘U’ T ‘C ‘K ‘F ‘O’ ‘X ‘B’ ‘S’ ‘T ‘U ‘M’ ‘P’ ‘E’ ‘D’ ‘O’ ‘V* ‘E’
R ‘T"'H‘E ‘1’34 7L ‘AZ Y ‘B R ‘OW*N ‘DO ‘G ‘S];
Pcorr(u2.u) = 1 - length(find(y - ideal))/length(ideal); %Determine error performance
end;
end;
Pgraybandl = Pgrayband1 + Pcorr%Determine overall performance as sum of all trials
save Pgrayband1 Pgrayband1%Store overall performance
end;

cutter.m

%0%0%e To %o TeTe To %o %o %o %o %o %o %o %o %o Yo %o %o %o %o %

JoPreprocessing

%o %0%0 %0 %% %o T o %o %o %o %o %o %o To %o %o %% Yo Yo %o

clear all;

load ocralastref; %stored reference image for OCR-A data

Ipf = [.25%ones(1,3); .25 1 .25; .25%ones(1,3)1/3;:%Low Pass Filter
x = filter2(lpf x); %Use Low-Pass Filter on Image

x = medfilt2(x,[3 3]);%Use Median Filter on Result
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% %% % %o % %e %o %o %o %o %o %o %o T To To To ToTo To %o %o
%]Identify Lines of Text
%% %0 %0 %o %% %o %o %o %o %o %e %o To %o %o o ToTo %o To Yo

[m,n] = size(x);

linex = [1;%Stores identified lines of text

liney = [};%Stores identified columns of text

y = sum(x’); %Sum down rows

linex = find(y > 2.2E5); %Apply threshold

linex?2 = [linex(2:length(linex)) 0];

[nj] = find((linex - linex2) <= -10);%If there is a large break between
%identified rows of text, make a new

Yorow

j2=j+1;

linfindxstart = linex(j); %Identifies beginning of row
linfindxend = linex(j2);%]Identifies end of row

%Create a matrix of all identified

for k = 1:[length(linfindxstart)]; %lines of text

eval([‘set’ num2str(k) ¢ = x([linfindxstart(k):linfindxend(k)1,:); ‘1);
end;

%% %% To%e %o To%e o %o To %o Te To %o %o %o To To %o To %o %o

%Parse individual characters from lines of text

%% % % % %% %o %o %o To %o %o Yo %o %o To %o %o %o %o To %o %o

count = 0; %Total number of Characters

for k = 1:length(linfindxstart);

if count > 46;%Quit when count = 46;

break;

end;

y = sum(eval([‘set’ num2str(k)]));%Work on the kth row of the original image

liney = find(y > 1.5E4); %Apply Threshold

liney2 = [liney(2:length(liney)) 0J;

[n,j] = find((liney - liney2) <= -10);%]If there is a sharp break between identifed
%columns, start a new character

j2=j+1;

linfindystart = liney(j); %Stores the starting column for character

linfindyend = liney(j2);%Stores the last column for the character

for v = 1:[length(linfindystart)];%Separate out and store the individual characters
%in a square matrix of dyadic size
count = count + 1;
t = eval([‘set’ num2str(k) ‘(:,(linfindystart(v):linfindyend(v)))’D);
eval([‘ocralastref” num2str(k) num2str(v) * = t;’]);
%Determine the largest dyadic number greater than the
%maximum dimension of the image
[nJcol] = dyadlength(eval([‘ocralastref’ num?2str(k) num2str(v) ‘(1,:)’1));
[n,Jrow] = dyadlength(eval([ ‘ocralastref’ num2str(k) num2str(v) ‘¢:,1)°']);
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Jref = max(Jcol,Jrow);

t = [‘ocralastref’ num2str(k) num2str(v)];

t =eval(t);

colpad = 2"Jref - size(t,2); %Number of pixels to pad columns
rowpad = 2AJref - size(t,1); %Number of pixels to pad rows

colpadleft = floor(colpad/2); %Pad rows and columns

colpadright = colpad - colpadleft;

rowpadtop = floor(rowpad/2);

rowpadbot = rowpad - rowpadtop;

eval({‘ocralastref” num?2str(k) num2str(v) © = [254*ones(size(t,1),colpadleft)

254*ones(size(t,1).colpadright)];’1);

t = eval([‘ocralastref’” num2str(k) num?2str(v)]);
eval([‘ocralastref” num2str(k) num2strtv) * = [254*ones(rowpadtop,size(t.2));

254*ones(rowpadbot.size(t,2))1;']);

t = eval([‘ocralastref” num2str(k) num2str(v)]);
t = t/sqri(sum(sum(t.A2))); % Normalize resulting image to have energy = 1;

eval([‘grayref’ num2str(k) num2str(v) * = t;’]);%Store the result in its own file
eval([‘save grayref’ num2str(k) num2str(v) ¢ grayref’ num2str(k) num2str(v)]);
end;

end;
end;

downdyadhi.m

function d = DownDyadHi(x,qmf{2)

% DownDyadHi -- Hi-Pass Downsampling operator (periodized)
% Usage

% d=DownDyadHi(x.f)

% Inputs

% x 1-dsignal at fine scale

% f filter

% Outputs

% 'y 1-d signal at coarse scale

%

% See Also

% DownDyadLo, UpDyadHi, UpDyadLo, FWT_PO, iconv
%

d = aconv(qmf2,x);

n = length(d);

d=d(1:2:(n-1));

%

% Copyright (c) 1993. Iain M. Johnstone
%
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%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

downdyadlo.m

function d = DownDyadLo(x,qmf1)

% DownDyadLo -- Lo-Pass Downsampling operator (periodized)
% Usage

% d=DownDyadLo(x.f)

% Inputs

% x 1-dsignal at fine scale

% f filter

% OQutputs

% vy 1-dsignal at coarse scale

%

% See Also

% DownDyadHi, UpDyadHi, UpDyadLo, FWT_PO, aconv
%

d = aconv(qmf1,x);

n = length(d);

d=d(1:2:(n-1));

%
% Copyright (c) 1993. Iain M. Johnstone

%

%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

dyadlength.m

function [n,J] = dyadlength(x)

% dyadlength -- Find length and dyadic length of array
% Usage

% [nJ]=dyadlength(x)

% Inputs

% x array of length n = 27J (hopefully)
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% Outputs
% n length(x)
% J least power of two greater than n
%
% Side Effects
% A warning is issued if n is not a power of 2.
%
% See Also
% quadlength, dyad, dyad2ix
%
n = length(x) ;
J = ceil(log(n)/log(2));
%if 2N ~=n ,
% disp(‘"Warning in dyadlength: n = 2/T”)
end

%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

fitid2.m

%function fftid2: takes the 2 - dimensional Fourier transform of each subband
%of the wavelet coefficient matrix wc and places the normalized Fourier
%coefficient magnitudes into a feature vector

function idvector = fftid2(wc);
idvector = [];%Initialize output vector
[n,J] = quadlength(wc); %Determine dyadic size of square array

for k = J:-1:1;%Perform for each scale
high = (2"\(k-1) +1):2/k;%High-pass range
low = 1:27(k-1); %Low-pass range

N = length(low)*2; %emaximum dimension

%For each of the three subbands at this scale, take the 2-
%dimensional Fourier transform and append the magnitude of each onto
%a feature vector

idvector = [idvector reshape(abs(fft2(wc(high,low))),1,N)];
idvector = [idvector reshape(abs(fft2(wc(low,high))),1.N)1;
idvector = [idvector reshape(abs(fft2(wc(high high))),1,N)1;
end;

%Add the (1,1) wavelet coefficient

idvector = [idvector wc(1)];

%Normalize the resulting vector

idvector = idvector/length(idvector);
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idvector = idvector/sqri(sum(idvector.A2));

FWT2_PO.m

function we = FWT2_PO(x,L,qmf)

% FWT2_PO -- 2-d MRA wavelet transform (periodized, orthogonal)
% Usage

% wc=FWT2_PO(x,L,qmf)

% Inputs

% x 2-dimage (n by n array, n dyadic)

% L coarse level

% qmf quadrature mirror filter

% Outputs

% wc 2-d wavelet transform

%

% Description

% A two-dimensional Wavelet Transform is computed for the
% array x. To reconstruct, use IWT2_PO.

%

% See Also

% IWT2_PO, MakeONFilter
%

[n.J] = quadlength(x);

WC =X

nc=n;

for jscal=J-1:-1:L,

top = (nc/2+1):nc; bot = 1:(nc/2);

for ix=1:nc,

row = wc(ix,1:nc);

wc(ix,bot) = downdyadlo(row,qmf);
wec(ix,top) = downdyadhi(row,qmf);
end

for iy=1:nc,

row = we(l:nc,iy)’s

wc(top,iy) = downdyadhi(row,qmf)’;
wc(bot,iy) = downdyadlo(row,qmf)’;
end

nc = nc/2;

end

%
% Copyright (c) 1993. David L. Donoho

%

%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%
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iconv.m
function y = iconv(f,x)
% iconv -- Convolution Tool for Two-Scale Transform
% Usage
% vy =iconv(fx)
% Inputs
% f filter
% x 1-dsignal
% Outputs
% 'y filtered result
%
% Description
% Filtering by periodic convolution of x with f
%
% See Also
% aconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo
%
n = length(x);
p = length(f);
ifp<=n,
xpadded = [x((n+1-p):n) x];
else
z = zeros(1,p);
for i=1:p,
imod = 1 + rem(p*n -p +i-1,n);
z(i) = x(imod);
end
xpadded = [z x];
end
ypadded = filter(f,1,xpadded);
y = ypadded((p+1):(a+p));

%
% Copyright (c) 1993. David L. Donoho
%

%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

loadgrayref.m

%% % % %0 %% %% %o % % %o %

%loadgrayref loads the grayscale reference images
%% % To %o To %o %o To T To To %o To

fork = 1:5;
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forj=1:§;

fk==5&j>4

break;

elseeval([‘load grayref’ num2str(k) num2str(G)1);
end;

end;

end;

loadgraytest.m

%% % %0 %o %o %o To %o %o %0 %o %0 %o

%loadgrayref loads the grayscale reference images
% %% %0 %e %o %0 % % %o To %o %o %o

fork = 1:4;

forj=1:13;

if exist([‘grayref’ num2str(k) num2str(j) ‘.mat’]) == 0;
break;

elseeval([‘load grayref’ num2str(k) num?2str(j)]);
end;

end;

end;

MakeONTFilter.m
function f = MakeONFilter(Type,Par)
% MakeONFilter -- Generate Orthonormal QMF Filter for Wavelet Transform

% Usage

% qmf = MakeONFilter(Type Par)

% Inputs

% Type string, ‘Haar’, ‘Beylkin’, ‘Coiflet’, ‘Daubechies’,

% ‘Symmlet’, ‘Vaidyanathan’

% Par integer, e.g. if Type = ‘Coiflet’, Par=3 specifies

% a Coiflet-3 wavelet

% Outputs

% qmf quadrature mirror filter

%

% Description

% The Haar filter (which could be considered a Daubechies-2) was the

% first wavelet, though not called as such, and is discontinuous.

%

% The Beylkin filter places roots for the frequency response function

% close to the Nyquist frequency on the real axis.

%

% The Coiflet filters are designed to give both the mother and father

% wavelets 2*Par vanishing moments; here Par may be one of 1,2,3,4 or 5.
%

% The Daubechies filters maximize the smoothness of the father wavelet
% (or “scaling function”) by maximizing the rate of decay of its Fourier
% transform. They are indexed by their length, Par, which may be one of
% 4,6,8,10,12,14,16,18 or 20.

%

% Symmlets are the “least asymmetric” compactly-supported wavelets with
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% maximum number of vanishing moments, here indexed by Par, which ranges
% from 4 to 10.

%

% The Vaidyanathan filter gives an exact reconstruction, but does not
% satisfy any moment condition. The filter has been optimized for

% speech coding.

%

% See Also

% FWT_PO,IWT_PO, FWT2_PO, IWT2_PO, WPAnalysis

%

% References

% The books by Daubechies and Wickerhauser.

%

if stremp(Type, Haar’),
f=[111./sqrt(2);
end

if stremp(Type, Beylkin’),
f=1[.099305765374.424215360813.699825214057...
A449718251149-.110927598348-.264497231446...
.026900308804.155538731877-.017520746267...
-.088543630623.019679866044.042916387274...
-.017460408696-.014365807969.010040411845...
.001484234782-.002736031626.0006404853291;

end

if stremp(Type,’ Coiflet’),

if Par==1,
f=[.038580777748-.126969125396-.077161555496...
607491641386.745687558934.226584265197];

end

if Par==2,
f=[.016387336463-.041464936782-.067372554722...
.386110066823.812723635450.417005184424...
-.076488599078-.059434418646.023630171947...
.005611434819-.001823208871-.000720549445];

end

if Par==3,
f=[-.003793512864.007782596426.023452696142...
-065771911281-.061123390003.405176902410...
.793777222626.428483476378-.071799821619...
-.082301927106.034555027573.0158805443864...
-.009007976137-.002574517688.001117518771...
.000466216960-.000070983303-.0000345997731;

end

if Par==4,
f=[.000892313668-.001629492013-.007346166328...
.016068943964.026682300156-.081266699680...
-.056077313316.415308407030.782238930920...
434386056491-.066627474263-.096220442034...
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.039334427123.025082261845-.015211731527...
-.005658286686.003751436157.001266561929...
-.000589020757-.000259974552.000062339034...
.000031229876-.000003259680-.000001784985];
end

if Par==5,

f = [-.000212080863.000358589677.002178236305...

-.004159358782-.010131117538.023408156762...
.028168029062-.091920010549-.052043163216...
421566206729.774289603740.437991626228...
-.062035963906-.105574208706.041289208741...
.032683574283-.019761779012-.009164231153...
.006764185419.002433373209-.001662863769...
-.000638131296.000302259520.000140541149...
-.000041340484-.000021315014.000003734597...
.000002063806-.000000167408-.000000095158]1;
end

end

if stremp(Type,’Daubechies’),

if Par==4,
f={.482962913145.836516303738...
.224143868042-.129409522551];
end

if Par==6,
f=1[.332670552950.806891509311...
459877502118-.135011020010...
-.085441273882.035226291882];
end

if Par==8,
f=1[.230377813309.714846570553...
.630880767930-.027983769417...
-.187034811719.030841381836...
.032883011667-.010597401785];
end

if Par==10,

f=1.160102397974.603829269797.724308528438...

.138428145901-.242294887066-.032244869585...
.077571493840-.006241490213-.012580751999...
.003335725285];

end

if Par==12,

f=1[.111540743350.494623890398.751133908021...

.315250351709-.226264693965-.129766867567...
.097501605587.027522865530-.031582039317...
.000553842201.004777257511-.001077301085];
end

if Par==14,

f=1[.077852054085.396539319482.729132090846...

469782287405-.143906003929-.2240361849%4...
.071309219267.080612609151-.038029936935...
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-.016574541631.012550998556.000429577973...
-.001801640704.000353713800];

end

if Par==16,
f=1[.054415842243.312871590914.675630736297...
.585354683654-.015829105256-.284015542962...
.000472484574.128747426620-.017369301002...
-.044088253931.013981027917.008746094047...
-.004870352993-.000391740373.000675449406...
-.000117476784];

end

if Par==18,
f=1[.038077947364.243834674613.604823123690...
.657288078051.133197385825-.293273783279...
-.096840783223.148540749338.030725681479...
-.067632829061.000250947115.022361662124...
-.004723204758-.004281503682.001847646883...
.000230385764-.000251963189.000039347320];
end

if Par==20,
f=[.026670057901.188176800078.527201188932...
.688459039454.281172343661-.249846424327...
-.195946274377.127369340336.093057364604...
-.071394147166-.029457536822.033212674059...
.003606553567-.010733175483.001395351747...
.001992405295-.000685856695-.000116466855...
.000093588670-.000013264203];

end

end

if stremp(Type,’ Symmlet’),

if Par==4,
f=1[-.107148901418-.041910965125.703739068656...
1.136658243408.421234534204-.140317624179...
-.017824701442.045570345896];

end

if Par==5,
f=[.038654795955.041746864422-.055344186117...
.2819906968541.023052966894.896581648380...
023478923136-.247951362613-.029842499869...
.027632152958];

end

if Par==6,
f=[.021784700327.004936612372-.166863215412...
-068323121587.6944579729581.113892783926...
477904371333-.102724969862-.029783751299...
063250562660.002499922093-.0110318675091;

end

if Par==7, '
f=1[.003792658534-.001481225915-.017870431651...
.043155452582.096014767936-.070078291222...

67




.024665659489.7581626019641.085782709814...
408183939725-.198056706807-.152463871896...
.005671342686.014521394762];

end

if Par==8,

f = [.002672793393-.000428394300-.021145686528...
.005386388754.069490465911-.038493521263...
-.073462508761.5153986703741.099106630537...
.680745347190-.086653615406-.202648655286...
.010758611751.044823623042-.000766690896...
-.004783458512];

end

if Par==9,
f=[.001512487309-.000669141509-.014515578553...
.012528896242.087791251554-.025786445930...
-270893783503.049882830959.873048407349...
1.015259790832.337658923602-.077172161097...
.000825140929.042744433602-.016303351226...
-.018769396836.000876502539.001981193736];

end

if Par==10,

£ =[.001089170447.000135245020-.012220642630...
-.002072363923.064950924579.016418869426...
-.225558972234-.100240215031.667071338154...
1.088251530500.542813011213-.050256540092...
-.045240772218.070703567550.008152816799...
-.028786231926-.001137535314.006495728375...
.000080661204-.000649589896];

end

end

if strcmp(Type,’ Vaidyanathan’),

f = [-.000062906118.000343631905-.000453956620...
-.000944897136.002843834547.000708137504...
-.008839103409.003153847056.019687215010...
-.014853448005-.035470398607.038742619293...
.055892523691-.077709750902-.083928884366...
.131971661417.135084227129-.194450471766...
-263494802488.201612161775.635601059872...
572797793211.250184129505.045799334111];

end

f=1f./nom(f);
%

% Copyright (c) 1993-5. Jonathan Buckheit and David Donoho
%

%
% Part of WaveLab Version .700
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% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

MirrorFilt.m

function y = MirrorFilt(x)

% MirrorFilt -- Apply (-1t modulation

% Usage

% h = MirrorFilt(l)

% Inputs

% 1 1-dsignal

% Outputs

% h 1-dsignal with DC frequency content shifted
% to Nyquist frequency

%

% Description

% h(t)= (DM *x(0), 1 <=t <=length(x)
%

% See Also

% DyadDownHi

%

y = -((-DA(L:length(x)) ).*x;

%
% Copyright (c) 1993. Iain M. Johnstone
%

%

% Part of WaveLab Version .700

% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

planetest.m

clear all;

loadplaneref; %Load reference images

loadplanetest; %L oad test images

Pcorrplanel = zeros(5,3); %Initialize overall recognition performance output variable
for trials = 1:12;%Run for 12 trials

Pcorr = zeros(5,3); %Initialize intermediate output variable

m = zeros(10,10); %Initialize Euclidean distance matrix

b = [4 12 20];%Run for all filter lengths

biterr = [.05 .02 .01 .001 .00011;%Run for all bit error rates
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%% % %o %o % %o %o %o %o %o %o %o To %o %o To %o %o %o %o o o To To

%Main program - Compute Euclidean Distance between test and reference
%image feature vectors using wavelet coefficients as features

%% %% %o %o %0 % %o %o %o %o %o %o %o ToTo To To %o %o o %o % %o

for u2 = l:length(biterr);

thisbiterr = biterr(u2);

for u = 1:length(b);

count2 = 1;%Initialize test image index

y = zeros(1,10);%Store identified plane here

qmf = MakeONFilter(‘Daubechies’,b(u)); %Create Daubechies wavelet filter of proper length
fork=1:3;

forj=1:4;

%Load test image

if exist([‘testplane’ num?2str(k) num?2str(j)]) == 0;
break;

else t = eval([‘testplane’ num?2str(k) num?2str(j)]);
count = 1;

forp=1:3;

%LLoad reference image
forg=1:4;
fp==3&q>2;
break;
else r = eval([ ‘refplane’ num?2str(p) num?2str(q)1);

r = FWT2_PO(r,1,gmf); % Compute wavelet transform of
%reference image
r = reshape(r(1:128,1:128),1,128"2);%Store coefficients
Yoas feature vector
if count == 1;%If this is the first pass
t = FWT2_PO(t,1,gmf); %Compute wavelet
%otransform of test
Jimage
t = reshape(t(1:128,1:128),1,128"2); %Store coefficients
%as feature vector
t = sig2bin(t,8, uniform’,’ gray’); % Simulate digital
%otransmission
%Introduce bit errors using a random number generator
bitchange = find(rand(1,length(t)) < thisbiterr);
noise = zeros(size(t));
noise(bitchange) = ones(size(bitchange));

%Corrupt transmitted vector with random bit errors
t = xor(t,noise);
t = bin2sig(t,8, uniform’,’ gray’); %Decode the signal

end;

m(count2,count) = (r-)*(r-t)’;%Compute Euclidean Distance

count = count + 1;%Increment reference image index

end;
end;
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end;

end;

[n,j] = min(m(count2,:)); %Determine index of reference image with smallest distance measure

y(count2) = j;%Convert to ASCII character

count2 = count2+1;%Increment test image index

end;

end;

ideal = 1:10;%Correct answer

Pcorr(u2,u) = 1 - length(find(y - ideal))/length(ideal); % Compute observed probability of correct
recognition

end;

end;

Pcorrplanel = Pcorrplanel + Pcorr;%Sum over all trials
save Pcorrplanel Pcorrplane 1;%save output variable
end;

end;

quadlength.m
function [n,J] = quadlength(x)
% quadlength -- Find length and dyadic length of square matrix
% Usage
% [nJ] = quadlength(x)
% Inputs
% x 2-dimage; size(n.n), n = 2] (hopefully)
% Outputs
% n length(x)
% J least power of two greater than n
%
% Side Effects
% A warning message is issue if n is not a power of 2,
% or if x is not a square matrix.
%
s = size(x);
n=s(l);
if s(2) ~=s(1),
disp(‘Warning in quadlength: nr != nc’)
end
k=1;J=0;whilek<n,k=2%k;J=1+J;end ;
ifk~=n,
disp(‘Warning in quadlength: n !=2AJ")
end

%

% Copyright (c) 1993. David L. Donoho
%

%
% Part of WaveLab Version .700
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% Built Friday, December 8, 1995 8:36:37 PM

% This is Copyrighted Material

% For Copying permissions see COPYING.m

% Comments? e-mail wavelab@playfair.stanford.edu
%

transtest.m

% %% %o % %o % %o %% %o %o %e Yo %o T %o %o To %

%Determine performance of multiresolution image recognition scheme
%using Fourier transform coefficients as elements of feature vectors
%% % %0 %o %o% %o %o %o %o %o %o %o %o %o % %o %o To

clear all;

loadgrayref; %load reference images

loadgraytranstest; %load test images

%Initialize global variables for simulation

global START_OK;

START OK=1;

Pgraytrans1= zeros(5,3); %nitialize overall performance output variable
for trials = 1:12;%run for 12 trials

Pcorr = zeros(5,3); %nitialize intermediate output variable - percentage
%of correctly identified images for single trial

m = zeros(46,36); %Initialize Euclidean distance measure matrix

b = [4 12 20];%Length of Daubechies filter

biterr = [.05 .02 .01 .001 .0001]; %Probability of bit error

% %% %o %0 %o % %o % %o %o %o %o %o %o %o %o %o %o

%Main program: run simulation for all filter lengths and bit errors;

%% %o %o %o %% %o %o %o %o To %o Fo To %o To To To

for u2 = 1:length(biterr); %Run for all bit errors

thisbiterr = biterr(u2); %P(b) for this trial

for u = 1:length(b); %Run for all filter lengths

count? = 1;%Test image index

y = zeros(1,46);%Store text character identified in this vector

gmf = MakeONFilter(‘Daubechies’,b(u)); %Build Daubechies wavelet filter of given length

for k = 1:4;%Load test image
forj=1:13;
if exist([‘transtestgray’ num2str(k) num2str(j) ‘.mat’]) == 0;
break;
else eval([‘load transtestgray’ num?2str(k) num2str(j)]);
t = eval([‘transtestgray’ num2str(k) num2str(j)]);
%Compare with all reference images
count = 1;%reference image index
forp=1:5;
forg=1:8;
fp==5&q>4
break;
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else r = eval([ ‘grayref’ num2str(p) num?2str(q)]);
r = FWT2_PO(z,1,qmf); % Compute wavelet transform of reference
%image
r = fftid(r); % Compute feature vector by taking
%?2 - dimensional Fourier transform
%of each subband of wavelet transform
if count == 1;%If this is the first reference image

t = FWT2_PO(t,1,qmf); %Compute wavelet transform
%of test image
t = fftid(t); %Compute feature vector by taking
%?2 - dimensional Fourier transform
%0f each subband of wavelet transform

t = quantize(t,8,’scale’); %’Quantize uniformly using
%8 bits per coefficient

t = bin_enc(t,8); %Encode using natural binary code
t = bin2gray(t); %Convert to gray coding

%Introduce random errors using random number generator with
Zoprobability = thisbiterr

bitchange = find(rand(size(t)) < thisbiterr);
noise = zeros(size(t));
bitchange = find(rand(size(t)) < thisbiterr);
noise(bitchange) = ones(size(bitchange));
% Corrupt transmitted signal t with random bit errors found above
t = xor(t,noise);
t = gray2bin(t); %convert to natural binary code
t = bin_dec(t); %decode signal
end;
m(count2.count) = (r-t)*(r-t)";%Compute distance between reference
%and test vectors

count = count + 1;
end;
end;
end;
end;
[nj] = min(m(count2,:)); %ZDetermine index of reference image with minimum
%Euclidean distance

y(count2) = num?let(j); %Convert to ASCII character
count2 = count2+1;%Increment test vector index
end;

end;
%Compare results obtained this trial with correct answer
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ideal - [‘25 ‘0’ 699 ‘5, ‘67 SQ’ ‘U’ ‘I’ ‘C, ‘K, ‘F’ ‘O’ ‘X’ ‘E’ bS’ 6]” ‘U’ ‘M, ‘P? ‘E? ED’ ‘O’ ‘V, ‘E,
‘R, ‘T’ ‘H’ ‘E9 ‘1’ ‘3’ ‘4, L8’ 679 ‘L, ‘A’ ‘Z? ‘Y, ‘B’ ‘R? &O’ GW’ $N9 ‘D’ (O’ ‘G? GS’];
Pcorr(u2,u) = 1 - length(find(y - ideal))/length(ideal); %Determine error performance

end;

end;

Pgraytrans] = Pgraytrans1 + Pcorr; %Determine overall performance as sum of all trials
save Pgraytrans1 Pgraytrans1;%Store overall performance

end;

wavetest.m

% %% % %o % %0 % To %o To To T To To T Fo To %o

%Test the performance of multiresolution image recognition over noisy channel
%using wavelet coefficients as feature vectors

%% %0 %e %o %o %o %o To %o Te Te e To T o To To %o

clear all;
global START_OK;%Set global variable for transmission channel simulation
START OK = 1;

loadgrayref;%load reference images
loadgraytest; %load test images
Pcorrla = zeros(5,3); %initialize output variable - Probability of correct recognition overall

for trials = 1:12;%Perform test 12 times

Pcorr = zeros(5,3); % Intermediate output variable - Probability of correct recognition this trial
m = zeros(46,36); %Euclidian Distance measure matrix

b =[4 12 20];%Length of Daubechies filters to test

biterr = [ .05 .02 .01 .001 .0001];%Probability of bit errors to test

%% % %o %0 %
%Main part of program: determine recognition performance for each bit error length and

%each filter length at this resolution level (R1)

for u2 = 1:length(biterr);%Run for all bit errors

thisbiterr = biterr(u2); %P(b) this trial

for u = 1:length(b); %Run for all filter lengths

count2 = 1;%Index of test character

y = zeros(1,46);%Store text character identified in this vector

qmf = MakeONFilter(‘Daubechies’ b(u)); % Create Daubechies filter of correct length for this trial

for k = 1:5;%load next test character

forj=1:13;

if exist([‘graytest’ num2str(k) num2str(j)]) == 0;
break;

else t=eval([‘graytest’ num2str(k) num2str(j)1);

count = 1; %Compute Euclidean distance to all reference characters
forp=1.5;
forq=1:8;
fp==5&q>4;
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break;
else r = eval([‘grayref” num2str(p) num2str(q));

1=FWT2_PO(r.1.qmf); % Compute wavelet decompostion using
%wavelet filter qmf

1 = reshape(r(1:128,1:128),1,128"2);%Reshape all
%coefficients into
Yovector
if count == 1;%If this is the first reference character,
Jecompute the wavelet transform of the
%test image and
%esimulate tranmitting it over a
%noisy channel

t=FWT2_PO(t,1,qmf); %Compute wavelet
%edecomposition using qmf

t = reshape(t(1:128,1:128),1,12872); %Put into vector

t = quantize(t,8,’scale’); %sQuantize uniformly using
%3 bits per coefficient

t = bin_enc(t,8); %Use natural binary encoding

t = bin2gray(t); %convert to gray coding

%Introduce bit errors randomly with probability
%equal to thisbiterr using random number
%generator
bitchange = find(rand(1,length(t)) < thisbiterr);
noise = zeros(size(t));
noise(bitchange) = ones(size(bitchange));
% Corrupt t with random errors from abover
t = xor(t,noise);
%Recover corrupted signal
t = gray2bin(t); %convert to natural binary
t = bin_dec(t); %Decode signal
end;
m(count2,count) = (r-t)*(r-t)’;%Compute Euclidean distance
count = count + 1;%Increment reference image index
end;
end;
end;
end;
[n,j] = min(m(count2,:)); %Determine index of smallest Euclidean distance

y(count2) = num?2let(j); %Convert to ASCI letter
count? = count2+1; %Increment test image index
end;
end;

%% Compare results with correct answer
ideal = [62? ‘0, 695 ‘5’ ‘67 ‘Q, ‘U’ 619 ‘C, GK’ ‘F’ ‘O’ GXS ‘E, ‘S’ SJ’ SU’ ‘M, ‘P’ ‘E’ ‘D’ ‘O’ ‘V’ ‘E)

‘R, ‘T’ ‘H’ ‘E’ (ls ‘37 54! 68’ ‘77 ‘L’ ‘A, cz’ ‘Y’ ‘B, ‘R, ‘O’ ‘W, ‘N’ ‘D’ 609 LG’ cS’];
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Pcorr(u2,u) = 1 - length(find(y - ideal))/length(ideal);%Determine error performance

end;

end; '

Pcorrla = Peorria + Peorr%Determine overall performance as sum of individual trials
trials

save Pcorrla Pcorrla; %Save output

end;

end;
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